Scaling Bayesian inference of mixed multinomial logit models to large datasets

Filipe Rodrigues

May 2022

Motivation

- Full Bayesian treatment of choice models has several advantages over maximum likelihood estimation
 - Obtain full posterior distributions over the model parameters (including the individual-specific taste parameters)
 - Handle incomplete data by marginalizing over missing variables
 - Natural support for online inference for streaming data
 - Support for automatic utility function specification approaches¹

¹Rodrigues, F., Ortelli, N., Bierlaire, M. and Pereira, F.C., 2020. Bayesian automatic relevance determination for utility function specification in discrete choice models. IEEE Transactions on Intelligent Transportation Systems.

ng for Smart Mobility

Motivation

- Full Bayesian treatment of choice models has several advantages over maximum likelihood estimation
 - Obtain full posterior distributions over the model parameters (including the individual-specific taste parameters)
 - Handle incomplete data by marginalizing over missing variables
 - Natural support for online inference for streaming data
 - Support for automatic utility function specification approaches¹
- MCMC methods carry extremely high computational costs (both in terms of time and storage)
- Variational inference (VI) can provide significant improvements in computational efficiency (see Bansal et al. (2020) and Tan (2017))

ng for Smart Mobility

¹Rodrigues, F., Ortelli, N., Bierlaire, M. and Pereira, F.C., 2020. Bayesian automatic relevance determination for utility function specification in discrete choice models. IEEE Transactions on Intelligent Transportation Systems.

Motivation

- Full Bayesian treatment of choice models has several advantages over maximum likelihood estimation
 - Obtain full posterior distributions over the model parameters (including the individual-specific taste parameters)
 - Handle incomplete data by marginalizing over missing variables
 - Natural support for online inference for streaming data
 - Support for automatic utility function specification approaches¹
- MCMC methods carry extremely high computational costs (both in terms of time and storage)
- Variational inference (VI) can provide significant improvements in computational efficiency (see Bansal et al. (2020) and Tan (2017))
- However, several limitations remain:
 - Scalability to large datasets
 - Difficulty in using "modern" priors
 - Lack of flexibility to capture highly complex posteriors

¹Rodrigues, F., Ortelli, N., Bierlaire, M. and Pereira, F.C., 2020. Bayesian automatic relevance determination for utility function specification in discrete choice models. IEEE Transactions on Intelligent Transportation Systems.

TL; DR

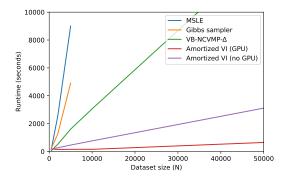


Figure: Scalability plot comparing the proposed Amortized VI approach with MSLE, Gibbs sampling and the VB-NCVMP- Δ approach from Bansal et al. (2020)

Bayesian mixed logit model

Generative process of the Bayesian mixed logit model considered:

- 1. Draw fixed taste parameters $\boldsymbol{lpha} \sim \mathcal{N}(\boldsymbol{\lambda}_0, \boldsymbol{\Xi}_0)$
- 2. Draw mean vector $\boldsymbol{\zeta} \sim \mathcal{N}(\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0)$
- 3. Draw scales vector $oldsymbol{ au}\sim {\sf half}{\sf -Cauchy}(oldsymbol{\sigma}_0)$
- 4. Draw correlation matrix $\mathbf{\Psi} \sim \mathsf{LKJ}(\nu)$
- 5. For each decision-maker $n \in \{1, \ldots, N\}$
 - (a) Draw random taste parameters $oldsymbol{eta}_n \sim \mathcal{N}(oldsymbol{\zeta}, oldsymbol{\Omega})$
 - (b) For each choice occasion $t \in \{1, \ldots, T_n\}$

(i) Draw observed choice $y_{nt} \sim \mathsf{MNL}(\boldsymbol{\alpha}, \boldsymbol{\beta}_n, \boldsymbol{X}_{nt})$

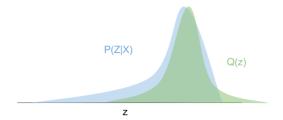
where $\mathbf{\Omega} = \mathsf{diag}(oldsymbol{ au}) imes oldsymbol{\Psi} imes \mathsf{diag}(oldsymbol{ au})$

Variational inference: basics

- Let $\mathbf{z} = \{ \alpha, \zeta, \tau, \Psi, \boldsymbol{\beta}_{1:N} \}$ denote the set of all latent variables in the model
- Goal: compute posterior of z given a dataset of observed choices p(z|y_{1:N})

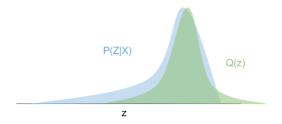
Variational inference: basics

- Let $\mathbf{z} = \{ \alpha, \zeta, \tau, \Psi, \boldsymbol{\beta}_{1:N} \}$ denote the set of all latent variables in the model
- Goal: compute posterior of z given a dataset of observed choices p(z|y_{1:N})
- Consider a family of tractable distributions $q_{\phi}(\mathbf{z}|\mathbf{y})$ parameterized by ϕ
- Find parameters ϕ that make $q_{\phi}(\mathbf{z}|\mathbf{y})$ as close as possible to $p(\mathbf{z}|\mathbf{y}_{1:N})$



Variational inference: basics

- Let $\mathbf{z} = \{ \alpha, \zeta, \tau, \Psi, \boldsymbol{\beta}_{1:N} \}$ denote the set of all latent variables in the model
- Goal: compute posterior of z given a dataset of observed choices p(z|y_{1:N})
- Consider a family of tractable distributions $q_{oldsymbol{\phi}}(\mathbf{z}|\mathbf{y})$ parameterized by $oldsymbol{\phi}$
- Find parameters ϕ that make $q_{\phi}(\mathbf{z}|\mathbf{y})$ as close as possible to $p(\mathbf{z}|\mathbf{y}_{1:N})$



or Smart Mobility

- Measure similarity between distributions using $\mathbb{KL}(q_{\phi}(\mathbf{z}|\mathbf{y})||p(\mathbf{z}|\mathbf{y}))$
- Minimize $\mathbb{KL}(q_{\phi}(\mathbf{z}|\mathbf{y})||p(\mathbf{z}|\mathbf{y}))$ w.r.t. ϕ

Variational inference: challenges

• We cannot minimize $\mathbb{KL}(q_{\phi}(\mathbf{z}|\mathbf{y})||p(\mathbf{z}|\mathbf{y}))$ directly (intractable), but...

$$\mathbb{KL}(q_{\boldsymbol{\phi}}(\mathbf{Z}|\mathbf{y})||p(\mathbf{Z}|\mathbf{y})) = -(\underbrace{\mathbb{E}_{q_{\boldsymbol{\phi}}}[\log p(\mathbf{y}, \mathbf{Z})] - \mathbb{E}_{q_{\boldsymbol{\phi}}}[\log q_{\boldsymbol{\phi}}(\mathbf{Z}|\mathbf{y})]}_{\mathcal{L}(q_{\boldsymbol{\phi}}) \text{ or "ELB0"}}) + \underbrace{\log p(\mathbf{y})}_{\text{const.}}$$

• Instead, we maximize $\mathcal{L}(q_{\phi})$ - referred to as the evidence lower bound (**ELBO**)

Variational inference: challenges

• We cannot minimize $\mathbb{KL}(q_{\phi}(\mathbf{z}|\mathbf{y})||p(\mathbf{z}|\mathbf{y}))$ directly (intractable), but...

$$\mathbb{KL}(q_{\phi}(\mathbf{Z}|\mathbf{Y})||p(\mathbf{Z}|\mathbf{Y})) = -(\underbrace{\mathbb{E}_{q_{\phi}}[\log p(\mathbf{Y}, \mathbf{Z})] - \mathbb{E}_{q_{\phi}}[\log q_{\phi}(\mathbf{Z}|\mathbf{Y})]}_{\mathcal{L}(q_{\phi}) \text{ or "ELBO"}}) + \underbrace{\log p(\mathbf{Y})}_{\text{const.}}$$

- Instead, we maximize $\mathcal{L}(q_{\phi})$ referred to as the evidence lower bound (**ELBO**)
- Challenges:
 - 1) ELBO is still intractable for many models of interest (including logit models)
 - 2) Cannot choose arbitrary priors we rely on conjugate priors for tractability
 - Number of variational parameters grows linearly with the number of respondents N (assuming a fully-factorized/mean-field approximation)

$$q_{\boldsymbol{\phi}}(\mathbf{Z}|\mathbf{Y}) = q(\boldsymbol{\alpha}) \, q(\boldsymbol{\zeta}) \, q(\boldsymbol{\tau}) \, q(\boldsymbol{\Psi}) \prod_{n=1}^{N} q(\boldsymbol{\beta}_{n})$$

- 4) $q_{\phi}(\mathbf{z}|\mathbf{y})$ must be sufficiently flexible to accurately approximate $p(\mathbf{z}|\mathbf{y}_{1:N})$
- Contributions: use Stochastic Backpropagation for 1) and 2); use Amortization for 3); use Normalizing Flows for 4)

Stochastic backpropagation

• Recall: in VI, we want to maximize the ELBO w.r.t. ϕ

$$\phi^* = \arg \max_{\phi} \Big(\underbrace{\mathbb{E}_{q_{\phi}}[\log p(\mathbf{y}, \mathbf{z})] - \mathbb{E}_{q_{\phi}}[\log q_{\phi}(\mathbf{z}|\mathbf{y})]}_{\text{ELBO}} \Big)$$

Stochastic backpropagation

• Recall: in VI, we want to maximize the ELBO w.r.t. ϕ

$$\phi^* = \arg \max_{\phi} \Big(\underbrace{\mathbb{E}_{q_{\phi}}[\log p(\mathbf{y}, \mathbf{z})] - \mathbb{E}_{q_{\phi}}[\log q_{\phi}(\mathbf{z}|\mathbf{y})]}_{\text{ELBO}} \Big)$$

- Reparameterize z in terms of a known base distribution and a differentiable transformation
 - Example: suppose $q_{\phi}(z) = \mathcal{N}(z|\mu,\sigma^2)$ with $\phi = \{\mu,\sigma\}$, then:

$$z \sim \mathcal{N}(z|\mu, \sigma^2) \Leftrightarrow z = \mu + \sigma \epsilon, \quad \epsilon \sim \mathcal{N}(0, 1)$$

Stochastic backpropagation

- Recall: in VI, we want to maximize the ELBO w.r.t. ϕ

$$\phi^* = \arg \max_{\phi} \Big(\underbrace{\mathbb{E}_{q_{\phi}}[\log p(\mathbf{y}, \mathbf{z})] - \mathbb{E}_{q_{\phi}}[\log q_{\phi}(\mathbf{z}|\mathbf{y})]}_{\text{ELBO}} \Big)$$

- Reparameterize z in terms of a known base distribution and a differentiable transformation
 - Example: suppose $q_{\phi}(z) = \mathcal{N}(z|\mu,\sigma^2)$ with $\phi = \{\mu,\sigma\}$, then:

$$z \sim \mathcal{N}(z|\mu, \sigma^2) \Leftrightarrow z = \mu + \sigma \epsilon, \quad \epsilon \sim \mathcal{N}(0, 1)$$

• Compute gradients of an arbitrary function f(z) (e.g., ELBO) w.r.t. ϕ using a Monte Carlo approximation with draws from the base distribution, since

$$\nabla_{\phi} \mathbb{E}_{q_{\phi}(z)}[f(z)] \Leftrightarrow \mathbb{E}_{\mathcal{N}(\epsilon|0,1)}[\nabla_{\phi} f(\mu + \sigma \epsilon)]$$

• This allows us to construct flexible approximate distributions $q_{\phi}(\mathbf{z}|\mathbf{y})$ using Neural Networks and fit their parameters by backpropagating gradients

• How to avoid that the number of variational parameters grows linearly with the number of respondents *N*?

$$q(\boldsymbol{\beta}_n) = \mathcal{N}(\boldsymbol{\beta}_n | \boldsymbol{\mu}_n, \boldsymbol{\Sigma}_n)$$

• How to avoid that the number of variational parameters grows linearly with the number of respondents *N*?

$$q(\boldsymbol{\beta}_n) = \mathcal{N}(\boldsymbol{\beta}_n | \boldsymbol{\mu}_n, \boldsymbol{\Sigma}_n)$$

Instead, consider a variational distribution of the form

$$q(\boldsymbol{\beta}_n | f_{\boldsymbol{\theta}}(\mathbf{y}_n, \mathbf{X}_n, \mathbf{a}_n))$$

where $f_{\theta}(\mathbf{y}_n, \mathbf{X}_n, \mathbf{a}_n)$ maps the observed choice data of a decision-maker n to a set of variational parameters that represents his/her taste parameters

• How to avoid that the number of variational parameters grows linearly with the number of respondents *N*?

$$q(\boldsymbol{\beta}_n) = \mathcal{N}(\boldsymbol{\beta}_n | \boldsymbol{\mu}_n, \boldsymbol{\Sigma}_n)$$

Instead, consider a variational distribution of the form

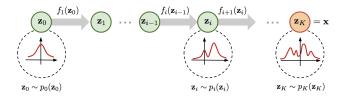
$$q(\pmb{\beta}_n|f_{\pmb{\theta}}(\pmb{\mathrm{y}}_n,\pmb{\mathrm{X}}_n,\pmb{\mathrm{a}}_n))$$

where $f_{\theta}(\mathbf{y}_n, \mathbf{X}_n, \mathbf{a}_n)$ maps the observed choice data of a decision-maker n to a set of variational parameters that represents his/her taste parameters

- f_{θ} must be flexible and differentiable use a deep neural network!
- Estimate neural network parameters heta through stochastic backpropagation
- Number of variational parameters no longer grows with N (it is fixed)
- Neural network f_{θ} can extrapolate across respondents

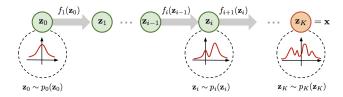
Normalizing flows

- Obtain complex density approximations $q_{\phi}(\mathbf{z}|\mathbf{y})$ to the true posterior
- Take a simple base distribution $p(\mathbf{u})$ (e.g. Gaussian) and apply a series of bijective differentiable transformations $T = T_K \circ \cdots \circ T_1$



Normalizing flows

- Obtain complex density approximations $q_{\phi}(\mathbf{z}|\mathbf{y})$ to the true posterior
- Take a simple base distribution $p(\mathbf{u})$ (e.g. Gaussian) and apply a series of bijective differentiable transformations $T = T_K \circ \cdots \circ T_1$



- Let \mathbf{z}_k be the value of a sample $\mathbf{z}_0 \sim p(\mathbf{u})$ takes after the k-th transformation
- Log probability of target distribution is

$$\log p(\mathbf{Z}) = \log p(\mathbf{U}) - \sum_{k=1}^{K} \log |\det \mathbf{J}_{T_k}(\mathbf{Z}_{k-1})|$$

where $\mathbf{J}_T(\mathbf{u}) = \frac{\partial T}{\partial \mathbf{u}}$ is the Jacobian of the transformation

• Simulated panel data: N = 500 respondents, T = 5 menus, J = 5 alternatives, L = 3 fixed effects and K = 5 random effects

- Simulated panel data: N = 500 respondents, T = 5 menus, J = 5 alternatives, L = 3 fixed effects and K = 5 random effects
- Baselines:
 - Maximum simulated likelihood estimation (MSLE)
 - Gibbs sampling
 - $\circ~$ Variational inference with delta-method-based approximation (NCVMP- Δ from Bansal et al., 2020)

- Simulated panel data: N = 500 respondents, T = 5 menus, J = 5 alternatives, L = 3 fixed effects and K = 5 random effects
- Baselines:
 - Maximum simulated likelihood estimation (MSLE)
 - Gibbs sampling
 - $\circ~$ Variational inference with delta-method-based approximation (NCVMP- Δ from Bansal et al., 2020)
- 2 variants of the proposed approach:
 - SVI-LKJ: Only stochastic variational inference (SVI) approach (no amortization)
 - AVI-LKJ: Proposed amortized variational inference (AVI) approach

- Simulated panel data: N = 500 respondents, T = 5 menus, J = 5 alternatives, L = 3 fixed effects and K = 5 random effects
- Baselines:
 - Maximum simulated likelihood estimation (MSLE)
 - Gibbs sampling
 - $\circ~$ Variational inference with delta-method-based approximation (NCVMP- Δ from Bansal et al., 2020)
- 2 variants of the proposed approach:
 - SVI-LKJ: Only stochastic variational inference (SVI) approach (no amortization)
 - AVI-LKJ: Proposed amortized variational inference (AVI) approach

N = 500; T Method	T = 5; J = 5; L Runtime (s)	J = 3; $K = 5$; Ba Sim. Loglik.	tch Size = 500 RMSE α	RMSE ζ	RMSE $\boldsymbol{\beta}_n$
MSLE	$176 (\pm 24) \\ 227 (\pm 6) \\ 62 (\pm 9) \\ 125 (\pm 17) \\ 127 (\pm 21) \\$	-3475 (±34)	0.081 (±0.034)	0.094 (±0.033)	0.785 (±0.025)
Gibbs		-3477 (±34)	0.080 (±0.035)	0.095 (±0.033)	0.777 (±0.024)
NCVMP-∆		-3490 (±30)	0.087 (±0.035)	0.098 (±0.034)	0.782 (±0.024)
SVI-LKJ		-3483 (±34)	0.078 (±0.032)	0.093 (±0.034)	0.790 (±0.025)
AVI-LKJ		-3482 (±34)	0.078 (±0.034)	0.093 (±0.033)	0.792 (±0.024)

Experiments: scalability

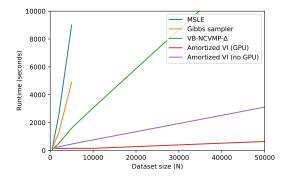
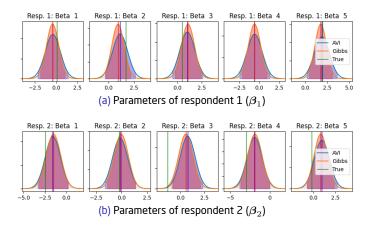
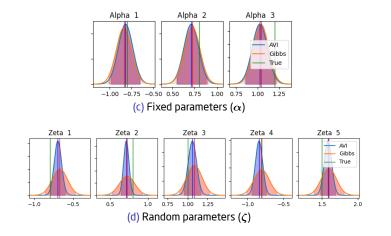


Figure: Scalability plot comparing the proposed Amortized VI approach with MSLE, Gibbs sampling and the VB-NCVMP- Δ approach from Bansal et al. (2020)

Experiments: credible intervals



Experiments: credible intervals



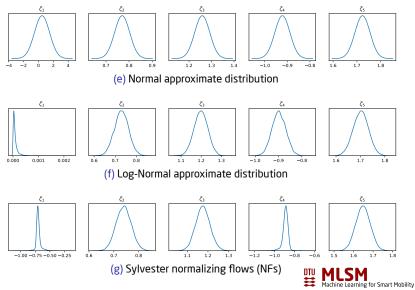
Experiments: normalizing flows

- Modified the model such that ζ_1 enters the utility function as $e^{\zeta_1}x_1$ instead of ζ_1x_1
- "Forces" a non-Gaussian posterior distribution on ζ_1 which we can try to capture with normalizing flows (NFs)

Table: Results obtained by Sylvester normalizing flows in comparison with two baseline parametric approximations

N = 500; T = 5; J = Method		= 5; Batch Size = 500 Sim. Loglik.
SVI-LKJ (Normal)	227 (±2)	-3653 (±53)
SVI-LKJ (LogNormal)	225 (±3)	-3564 (±55)
SVI-LKJ (NFs)	284 (±4)	-3492 (±61)

Experiments: normalizing flows



Experiments: London data

- London Passenger Mode Choice dataset provided by Hillel et al. (2018)
- Revealed preferences (RP)
- 3 alternatives: walking, public transport (PT) and car
- Focus only on individuals with age between 18 and 75 years old and trips with a walking time of less than 2 hours
- Total of 43778 trips
- Alternative attributes: travel cost, travel time, trip purpose (interacted with travel time) and discount fare

Method	Estimation time (s)	Sim. Loglik.
MSLE	10588 (±36)	-23216 (±168)
Gibbs	4856 (±89)	-23337 (±195)
SVI-LKJ	652 (±58)	-23697 (±176)
AVI-LKJ	496 (±51)	-23683 (±157)

Experiments: London data

Table: Comparison between the estimated means and credible intervals of AVI-LKJ with Gibbs sampling

Parameter	MSLE	Mean Gibbs	AVI	Std. Gibbs	Dev. AVI
ASC Walk (α_1)	2.333	2.242	2.328	0.080	0.034
ASC PT Full Ticket (α_2)	0.424	0.449	0.315	0.052	0.038
ASC PT Disabled (α_3)	0.862	0.800	0.845	0.058	0.043
$\begin{array}{c} \mbox{Travel Time x Purpose B } (\zeta_1) \\ \mbox{Travel Time x Purpose HBE } (\zeta_2) \\ \mbox{Travel Time x Purpose HBO } (\zeta_3) \\ \mbox{Travel Time x Purpose NHBO } (\zeta_4) \\ \mbox{Travel Time x Purpose NHBO } (\zeta_5) \\ \mbox{Travel Cost } (\zeta_6) \end{array}$	-1.815	-1.718	-1.929	0.051	0.016
	-2.034	-1.943	-2.043	0.070	0.017
	-1.740	-1.709	-1.651	0.039	0.011
	-1.398	-1.350	-1.491	0.061	0.022
	-1.835	-1.787	-1.956	0.059	0.048
	-0.611	-0.683	-0.412	0.059	0.058

Conclusions

- Scaled VI in Bayesian Mixed Logit models to large datasets
- Relaxed constraints on the choice of priors (e.g., conjugacy)
- Allowed for flexible posterior approximations (Normalizing Flows)
- Increased the support for the interaction between choice models and advanced ML methods
 - Created a new Python library PyDCML (in collaboration with Rico Krueger)
 - Easy-to-use formula interface:
 - V1 = BETA_COST*ALT1_COST + BETA_DUR*ALT1_DURATION + ...
 - Fast implementation and scalable inference of Bayesian Discrete Choice Models
 - GPU support (PyTorch backend)

PyDCML

- GitHub: https://github.com/fmpr/pyDCML
- Documentation: https://mlsm.man.dtu.dk/pydcml/intro.html
- PyDCML aims at enabling flexible and expressive Choice Modeling, unifying the best of modern Machine Learning and Bayesian modeling with Discrete Choice Theory
- Easy to extend to new models/ideas
- Currently supports:
 - Mixed Logit models with neural networks in the utilities²

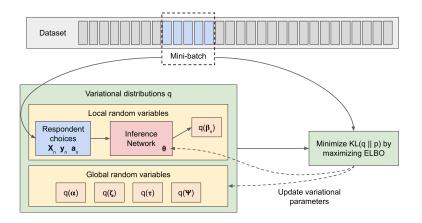
```
V1 = BETA_COST*ALT1_COST + BETA_DUR*ALT1_DURATION
```

```
+ NNET(INCOME, AGE, GENDER) + ...
```

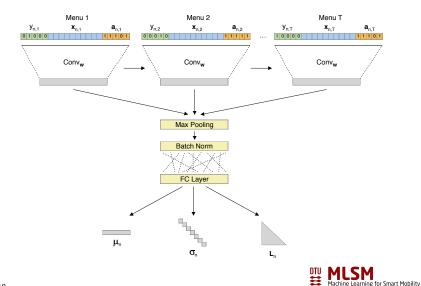
- Mixed Logit models with Automatic Relevance Determination³
- Mixed Ordered Logit models
- Upcoming: Context-aware Bayesian choice models (presented at ICMC 2022)
- All with fast and scalable Bayesian inference!

² Extends: Sifringer, B., Lurkin, V. and Alahi, A., 2020. Enhancing discrete choice models with representation learning. Transp. Res. Part B

³Extends: Rodrigues, F., Ortelli, N., Bierlaire, M. and Pereira, F.C., 2020. Bayesian automatic relevance determination for utility function specification in discrete choice models. IEEE Transactions on Intelligent Transportation Systems.



Inference network architecture



Sylvester normalizing flows

- Careful: T must be chosen such that \mathbf{J}_T is efficient to compute
- Sylvester normalizing flows (Berg et al., 2018) assume:

$$\mathbf{z}_k = \mathbf{z}_{k-1} \mathbf{Q} \mathbf{R} \, h(\tilde{\mathbf{R}} \mathbf{Q}^T \mathbf{z}_{k-1} + \mathbf{b})$$

where *h* is a smooth activation function and $\{\mathbf{R}, \tilde{\mathbf{R}}, \mathbf{Q}, \mathbf{b}\}$ are (constrained) learnable parameters

- This transformation is invertible and **J**_T can be computed in linear time
- Resembles a multi-layer fully-connected neural network
- Expressive building block for constructing arbitrarily complex distributions!

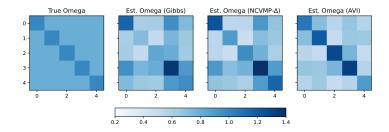


Figure: Visualization of the posterior mean of covariance matrix Ω obtained by different approaches

Experiments: out-of-sample generalization

 Once estimated, the inference network can be applied to infer the preference parameters β_n of unseen respondents "on-the-fly"

	Loglikelihood (n	ormalized by N)	RMS	$E\boldsymbol{\beta}_n$
Ν	Train	Test	Train	Test
500 2000 10000	12.278 (±0.158) 12.392 (±0.076) 12.576 (±0.028)	13.604 (±0.098) 13.022 (±0.053) 12.732 (±0.028)	$ 0.670 (\pm 0.014) \\ 0.661 (\pm 0.007) \\ 0.659 (\pm 0.003) $	$0.883 (\pm 0.018)$ $0.767 (\pm 0.011)$ $0.694 (\pm 0.004)$

Table: Results for the generalization ability of the inference network (T = 10; J = 5; L = 3; K = 5)

