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Motivation

• Full Bayesian treatment of choice models has several advantages over
maximum likelihood estimation

◦ Obtain full posterior distributions over the model parameters (including the
individual-specific taste parameters)

◦ Handle incomplete data by marginalizing over missing variables
◦ Natural support for online inference for streaming data
◦ Support for automatic utility function specification approaches1

• MCMC methods carry extremely high computational costs (both in terms of

time and storage)

• Variational inference (VI) can provide significant improvements in

computational efficiency (see Bansal et al. (2020) and Tan (2017))

• However, several limitations remain:

◦ Scalability to large datasets
◦ Difficulty in using “modern” priors
◦ Lack of flexibility to capture highly complex posteriors

1
Rodrigues, F., Ortelli, N., Bierlaire, M. and Pereira, F.C., 2020. Bayesian automatic relevance determination for utility function specification in

discrete choice models. IEEE Transactions on Intelligent Transportation Systems.
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Figure: Scalability plot comparing the proposed Amortized VI approach with MSLE,

Gibbs sampling and the VB-NCVMP-∆ approach from Bansal et al. (2020)
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Bayesian mixed logit model

Generative process of the Bayesian mixed logit model considered:

1. Draw fixed taste parameters α ∼ N (λ0,Ξ0)

2. Draw mean vector ζ ∼ N (µ0,Σ0)

3. Draw scales vector τ ∼ half-Cauchy(σ0)

4. Draw correlation matrix Ψ ∼ LKJ(ν)

5. For each decision-maker n ∈ {1, . . . , N}
(a) Draw random taste parameters βn ∼ N (ζ,Ω)

(b) For each choice occasion t ∈ {1, . . . , Tn}

(i) Draw observed choice ynt ∼ MNL(α,βn,Xnt)

where Ω = diag(τ )×Ψ× diag(τ )
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Variational inference: basics

• Let z = {α, ζ, τ ,Ψ,β1:N} denote the set of all latent variables in the model

• Goal: compute posterior of z given a dataset of observed choices - p(z|y1:N )

• Consider a family of tractable distributions qφ(z|y) parameterized by φ

• Find parameters φ that make qφ(z|y) as close as possible to p(z|y1:N )

• Measure similarity between distributions using KL(qφ(z|y)||p(z|y))
• Minimize KL(qφ(z|y)||p(z|y)) w.r.t. φ
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Variational inference: challenges

• We cannot minimize KL(qφ(z|y)||p(z|y)) directly (intractable), but...

KL(qφ(z|y)||p(z|y)) = −(Eqφ [log p(y, z)]− Eqφ [log qφ(z|y)]︸ ︷︷ ︸
L(qφ) or “ELBO”

) + log p(y)︸ ︷︷ ︸
const.

• Instead, we maximize L(qφ) - referred to as the evidence lower bound (ELBO)

• Challenges:

1) ELBO is still intractable for many models of interest (including logit models)

2) Cannot choose arbitrary priors - we rely on conjugate priors for tractability
3) Number of variational parameters grows linearly with the number of respondents N

(assuming a fully-factorized/mean-field approximation)

qφ(z|y) = q(α) q(ζ) q(τ ) q(Ψ)
N∏

n=1

q(βn)

4) qφ(z|y) must be sufficiently flexible to accurately approximate p(z|y1:N )

• Contributions: use Stochastic Backpropagation for 1) and 2); use

Amortization for 3); use Normalizing Flows for 4)
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Stochastic backpropagation

• Recall: in VI, we want to maximize the ELBO w.r.t. φ

φ∗ = argmax
φ

(
Eqφ [log p(y, z)]− Eqφ [log qφ(z|y)]︸ ︷︷ ︸

ELBO

)

• Reparameterize z in terms of a known base distribution and a differentiable

transformation
◦ Example: suppose qφ(z) = N (z|µ, σ2) with φ = {µ, σ}, then:

z ∼ N (z|µ, σ2) ⇔ z = µ+ σε, ε ∼ N (0, 1)

• Compute gradients of an arbitrary function f(z) (e.g., ELBO) w.r.t. φ using a

Monte Carlo approximation with draws from the base distribution, since

∇φEqφ(z)[f(z)] ⇔ EN (ε|0,1)[∇φf(µ+ σε)]

• This allows us to construct flexible approximate distributions qφ(z|y) using
Neural Networks and fit their parameters by backpropagating gradients
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Amortized variational inference

• How to avoid that the number of variational parameters grows linearly with

the number of respondents N?

q(βn) = N (βn|µn,Σn)

• Instead, consider a variational distribution of the form

q(βn|fθ(yn,Xn, an))

where fθ(yn,Xn, an) maps the observed choice data of a decision-maker n to

a set of variational parameters that represents his/her taste parameters

• fθ must be flexible and differentiable - use a deep neural network!

• Estimate neural network parameters θ through stochastic backpropagation

• Number of variational parameters no longer grows with N (it is fixed)

• Neural network fθ can extrapolate across respondents
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Normalizing flows

• Obtain complex density approximations qφ(z|y) to the true posterior

• Take a simple base distribution p(u) (e.g. Gaussian) and apply a series of

bijective differentiable transformations T = TK ◦ · · · ◦ T1

• Let zk be the value of a sample z0 ∼ p(u) takes after the k-th transformation

• Log probability of target distribution is

log p(z) = log p(u)−
K∑

k=1

log | det JTk
(zk−1)|

where JT (u) =
∂T
∂u

is the Jacobian of the transformation
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Experiments: parameter recovery

• Simulated panel data: N = 500 respondents, T = 5menus, J = 5 alternatives,

L = 3 fixed effects and K = 5 random effects

• Baselines:

◦ Maximum simulated likelihood estimation (MSLE)
◦ Gibbs sampling
◦ Variational inference with delta-method-based approximation (NCVMP-∆ from

Bansal et al., 2020)

• 2 variants of the proposed approach:

◦ SVI-LKJ: Only stochastic variational inference (SVI) approach (no amortization)
◦ AVI-LKJ: Proposed amortized variational inference (AVI) approach

N = 500; T = 5; J = 5; L = 3; K = 5; Batch Size = 500
Method Runtime (s) Sim. Loglik. RMSE α RMSE ζ RMSE βn

MSLE 176 (±24) -3475 (±34) 0.081 (±0.034) 0.094 (±0.033) 0.785 (±0.025)
Gibbs 227 (±6) -3477 (±34) 0.080 (±0.035) 0.095 (±0.033) 0.777 (±0.024)
NCVMP-∆ 62 (±9) -3490 (±30) 0.087 (±0.035) 0.098 (±0.034) 0.782 (±0.024)

SVI-LKJ 125 (±17) -3483 (±34) 0.078 (±0.032) 0.093 (±0.034) 0.790 (±0.025)
AVI-LKJ 127 (±21) -3482 (±34) 0.078 (±0.034) 0.093 (±0.033) 0.792 (±0.024)
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Experiments: scalability
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Figure: Scalability plot comparing the proposed Amortized VI approach with MSLE,

Gibbs sampling and the VB-NCVMP-∆ approach from Bansal et al. (2020)
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Experiments: credible intervals

(a) Parameters of respondent 1 (β1)

(b) Parameters of respondent 2 (β2)
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Experiments: credible intervals

(c) Fixed parameters (α)

(d) Random parameters (ζ)
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Experiments: normalizing flows

• Modified the model such that ζ1 enters the utility function as eζ1x1 instead of

ζ1x1

• “Forces” a non-Gaussian posterior distribution on ζ1 which we can try to

capture with normalizing flows (NFs)

Table: Results obtained by Sylvester normalizing flows in comparison with two

baseline parametric approximations

N = 500; T = 5; J = 5; L = 3; K = 5; Batch Size = 500
Method Runtime (s) Sim. Loglik.

SVI-LKJ (Normal) 227 (±2) -3653 (±53)
SVI-LKJ (LogNormal) 225 (±3) -3564 (±55)
SVI-LKJ (NFs) 284 (±4) -3492 (±61)
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Experiments: normalizing flows
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Experiments: London data

• London Passenger Mode Choice dataset provided by Hillel et al. (2018)

• Revealed preferences (RP)

• 3 alternatives: walking, public transport (PT) and car

• Focus only on individuals with age between 18 and 75 years old and trips

with a walking time of less than 2 hours

• Total of 43778 trips

• Alternative attributes: travel cost, travel time, trip purpose (interacted with

travel time) and discount fare

Method Estimation time (s) Sim. Loglik.

MSLE 10588 (±36) -23216 (±168)
Gibbs 4856 (±89) -23337 (±195)

SVI-LKJ 652 (±58) -23697 (±176)
AVI-LKJ 496 (±51) -23683 (±157)
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Experiments: London data

Table: Comparison between the estimated means and credible intervals of AVI-LKJ

with Gibbs sampling

Mean Std. Dev.
Parameter MSLE Gibbs AVI Gibbs AVI

ASC Walk (α1) 2.333 2.242 2.328 0.080 0.034
ASC PT Full Ticket (α2) 0.424 0.449 0.315 0.052 0.038
ASC PT Disabled (α3) 0.862 0.800 0.845 0.058 0.043

Travel Time x Purpose B (ζ1) -1.815 -1.718 -1.929 0.051 0.016
Travel Time x Purpose HBE (ζ2) -2.034 -1.943 -2.043 0.070 0.017
Travel Time x Purpose HBO (ζ3) -1.740 -1.709 -1.651 0.039 0.011
Travel Time x Purpose HBW (ζ4) -1.398 -1.350 -1.491 0.061 0.022
Travel Time x Purpose NHBO (ζ5) -1.835 -1.787 -1.956 0.059 0.048

Travel Cost (ζ6) -0.611 -0.683 -0.412 0.059 0.058
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Conclusions

• Scaled VI in Bayesian Mixed Logit models to large datasets

• Relaxed constraints on the choice of priors (e.g., conjugacy)

• Allowed for flexible posterior approximations (Normalizing Flows)

• Increased the support for the interaction between choice models and
advanced ML methods

◦ Created a new Python library - PyDCML (in collaboration with Rico Krueger)
◦ Easy-to-use formula interface:

V1 = BETA_COST*ALT1_COST + BETA_DUR*ALT1_DURATION + ...
◦ Fast implementation and scalable inference of Bayesian Discrete Choice Models
◦ GPU support (PyTorch backend)

18 of 19



PyDCML

• GitHub: https://github.com/fmpr/pyDCML
• Documentation: https://mlsm.man.dtu.dk/pydcml/intro.html
• PyDCML aims at enabling flexible and expressive Choice Modeling, unifying

the best of modern Machine Learning and Bayesian modeling with Discrete

Choice Theory

• Easy to extend to new models/ideas

• Currently supports:

◦ Mixed Logit models with neural networks in the utilities2

V1 = BETA_COST*ALT1_COST + BETA_DUR*ALT1_DURATION
+ NNET(INCOME, AGE, GENDER) + ...

◦ Mixed Logit models with Automatic Relevance Determination3

◦ Mixed Ordered Logit models

• Upcoming: Context-aware Bayesian choice models (presented at ICMC 2022)

• All with fast and scalable Bayesian inference!
2
Extends: Sifringer, B., Lurkin, V. and Alahi, A., 2020. Enhancing discrete choice models with representation learning. Transp. Res. Part B

3
Extends: Rodrigues, F., Ortelli, N., Bierlaire, M. and Pereira, F.C., 2020. Bayesian automatic relevance determination for utility function

specification in discrete choice models. IEEE Transactions on Intelligent Transportation Systems.
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Amortized variational inference
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Inference network architecture
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Sylvester normalizing flows

• Careful: T must be chosen such that JT is efficient to compute

• Sylvester normalizing flows (Berg et al., 2018) assume:

zk = zk−1QRh(R̃QT zk−1 + b)

where h is a smooth activation function and {R, R̃,Q,b} are (constrained)

learnable parameters

• This transformation is invertible and JT can be computed in linear time

• Resembles a multi-layer fully-connected neural network

• Expressive building block for constructing arbitrarily complex distributions!
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Experiments: parameter recovery
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Figure: Visualization of the posterior mean of covariance matrix Ω obtained by

different approaches
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Experiments: out-of-sample generalization

• Once estimated, the inference network can be applied to infer the preference

parameters βn of unseen respondents “on-the-fly”

Loglikelihood (normalized by N ) RMSE βn
N Train Test Train Test

500 12.278 (±0.158) 13.604 (±0.098) 0.670 (±0.014) 0.883 (±0.018)
2000 12.392 (±0.076) 13.022 (±0.053) 0.661 (±0.007) 0.767 (±0.011)
10000 12.576 (±0.028) 12.732 (±0.028) 0.659 (±0.003) 0.694 (±0.004)

Table: Results for the generalization ability of the inference network

(T = 10; J = 5; L = 3; K = 5)

19 of 19


